14[L, M].-K. A. Karpov, Tablitşy funktsǐ̌ $F(z)=\int_{0}^{z} e^{z^{2}} d x$ v kompleksnǒ̃ oblasti (Tables of the function $F(z)=\int_{0}^{z} e^{x^{2}} d x$ in the complex domain), Izdatel'stvo Akademii Nauk SSSR, Moscow, 1958, 518 p. +2 inserts, 27 cm . Price 61 rubles.
This is a companion volume to the tables reviewed in MTAC, vol. 12, p. 304305 , and completes the tabulation of the error function in the complex plane. The present volume contains 5 D or 5 S values of the real and imaginary parts of the function

$$
F(z)=\int_{0}^{z} e^{x^{2}} d x=u+\ddot{i v}
$$

for $z=\rho e^{i \theta}, 0 \leqq \rho \leqq \rho_{0}, \pi / 4 \leqq \theta \leqq \pi / 2$ and $\theta=0$. The quantity ρ_{0} depends on θ and decreases from $\rho_{0}=5$ for $\theta=\pi / 4$ to $\rho_{0}=3$ for $\theta=\pi / 2$. An exception is $\theta=0$, for which $\rho_{0}=10$. In the introduction, a diagram is given representing the intervals in θ and the value of ρ_{0} for each θ, and a table indicates the intervals in ρ in various parts of the volume. As in the earlier volume, the diagram is reproduced on a cardboard inset, which serves also as an index to the numerical tables.

The introduction gives integral representations and series expansions for u and v, graphs of u and v as functions of ρ for selected values of θ, relief diagrams of u and v over the sector of tabulation, a description of the tables and numerical examples showing their use, some useful numerical values, values of $\cos 2 \theta$, $\sin 2 \theta$, and values of $(2 n+1) \theta$ in radians for $n=0(1) 5$ and for those values of θ included in the tables. There is also a one-page auxiliary table of $t(1-t) / 4$ for $0 \leqq t \leqq 1$. This table, together with a nomogram for finding $\tilde{\Delta}^{2} t(1-t) / 4$, where $\tilde{\Delta}^{2}$ designates the sum of two consecutive second differences for use in Bessel's interpolation formula, is reproduced also on a cardboard inset.

Using the symmetry properties of $F(z)$, this function can now be evaluated on the real axis and in a sector of half-angle 45° to both sides of the imaginary axis. Between them, Karpov's two volumes contain a very satisfactory tabulation of the error function in the complex plane.

A. Erdélyi

California Institute of Technology
Pasadena, California
15[L, M, S].-Y. Nomura \& S. Katsura, "Diffraction of electric waves by circular plate and circular hole," Sci. Rep. Ritu, B-(Elect. Comm.) 10, No. 1, 1958, 43 p.
The problem of the diffraction of a plane electromagnetic wave by an infinitely thin, perfectly conducting, circular disk of radius a, and the problem of the diffraction of such a wave by a circular hole of radius a in a plane conducting screen are discussed. The method of solution involves the expansion of the two-component Hertz vector in terms of hypergeometric polynomials. The solution is valid for all frequencies. However, convergence is poor when $k a=2 \pi a / \lambda$ becomes large. Tables of values are included of the real and imaginary parts of

$$
G_{n \nu}^{m}=(2 m+4 \nu+1) \int_{0}^{\infty} \frac{J_{m+2 n+\frac{1}{2}}(\xi) J_{m+2 \nu+\frac{1}{2}}(\xi) d \xi}{\sqrt{\xi^{2}-(k a)^{2}}}
$$

